If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+64y-1024=0
a = 1; b = 64; c = -1024;
Δ = b2-4ac
Δ = 642-4·1·(-1024)
Δ = 8192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8192}=\sqrt{4096*2}=\sqrt{4096}*\sqrt{2}=64\sqrt{2}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(64)-64\sqrt{2}}{2*1}=\frac{-64-64\sqrt{2}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(64)+64\sqrt{2}}{2*1}=\frac{-64+64\sqrt{2}}{2} $
| 1/4x+31/2=2(1/2x+3/4 | | 8(x+4)=8(x+12) | | 8(x+4)=8(x+12 | | (1/3)z^2-9=0 | | x^=16x-28 | | 6x+3°=4x+29 | | 6b^2+2b-54=2b | | 22+6x=3x+24 | | 2/5m^2-40=0 | | 2x=X/2+99 | | 3x+1.5x=83.6 | | 5x=10^5 | | 11^6x=2x-13/ | | X=4x-188 | | 1/3z^2=9 | | 1/3z^2-9=0 | | 10000=5x | | 9g^2+5=6 | | 3+5n=3+8n | | 3w^2-5=13 | | 3/11+x=-5/22 | | 0=-1/2n^2-2 | | 3x+6-5x=7 | | 5/10x=84 | | -3+4m^2=22 | | -3+4m^2=0 | | x-5x-10=9+2x=7 | | -(5-5x)+8=-17+2x | | -9t+2=54 | | x16−x34=−1 | | 4-(x-3)+3x=-2(x-3)-5x+1 | | 8.3x-7=x+9.x= |